This exercise is a continuation of the exercise
Let M0 be a matrix with bacteria at the initial time, and let M1, M2, M3, …be the matrices at the times 1, 2, 3, …Write a program that, given M0, finds the cycle that is obtained starting at M0, that is, the first and shortest sequence of matrices Mi, Mi+1, …, Mj−1, Mj such that Mj+1 = Mi. Suppose j < 100.
Input
Input consists of the description of the matrix M0: two strictly positive natural numbers n and m, followed by n lines, each one with m characters: ‘B’ if the position has a bacterium, and ‘.’ if the position is empty.
Output
Print the matrices of the cycle Mi, Mi+1, …, Mj−1, Mj separated by an empty line.
Input
7 7 ....BBB .B.BBBB .B.BBBB ..BBBBB .B.BBBB .B.BBBB ....BBB
Output
....... ....... ....... BBB.... ....... ....... ....... ....... ....... .B..... .B..... .B..... ....... .......
Input
2 2 BB ..
Output
.. ..
Input
10 10 .......... ...BBBB... ...B..B... .BBB..BBB. .B......B. .B......B. .BBB..BBB. ...B..B... ...BBBB... ..........
Output
.......... ...BBBB... ...B..B... .BBB..BBB. .B......B. .B......B. .BBB..BBB. ...B..B... ...BBBB... .......... ....BB.... ...BBBB... .......... .B.B..B.B. BB......BB BB......BB .B.B..B.B. .......... ...BBBB... ....BB.... ...B..B... ...B..B... ..BB..BB.. BBB....BBB .......... .......... BBB....BBB ..BB..BB.. ...B..B... ...B..B...