Estadístiques d'una seqüència d'enters amb esborrat del més antic X38371


Statement
 

pdf   zip   tar

html

Considerem una seqüència de nombres enters compresos entre -1000 y 1000, amb instruccions d’esborrat intercalades en qualsevol moment. Cada cop que es llegeixi o s’esborri un nombre, s’ha d’obtenir el mínim, el màxim i la mitjana dels nombres que s’hagin llegit fins el moment, excepte els que s’hagin esborrat. Qualsevol nombre més gran que 1000 o mes petit que -1001 marca el final de la seqüència. El nombre -1001 representa una instrucció d’esborrat, en concret de l’element més antic de la seqüència. Si després d’un esborrat la seqüència està buida (tant si és perque s’ha esborrat el seu únic element, o perque ja ho estava), només sha d’escriure un zero. Tot procés iteratiu auxiliar de les estadístiques ha de programar-se en operació a part. En cada tractament només és pot recórrer la seqüència una cop com a molt i només si és estrictament necessari.

Entrada

Veure joc de proves.

Sortida

Veure joc de proves.

Observació

Per resoldre aquest exercici, només cal fer servir una cua d’enters. Cal lliurar només un fitxer amb el programa complet.

Public test cases
  • Input

    1
    2
    3
    -1001
    -1001
    -1001
    -1001
    1
    4
    -1001
    -1001
    4
    1
    2
    3
    1
    2
    3
    4
    -1001
    -1001
    
    1001

    Output

    min 1; max 1; media 1
    min 1; max 2; media 1.5
    min 1; max 3; media 2
    min 2; max 3; media 2.5
    min 3; max 3; media 3
    0
    0
    min 1; max 1; media 1
    min 1; max 4; media 2.5
    min 4; max 4; media 4
    0
    min 4; max 4; media 4
    min 1; max 4; media 2.5
    min 1; max 4; media 2.33333
    min 1; max 4; media 2.5
    min 1; max 4; media 2.2
    min 1; max 4; media 2.16667
    min 1; max 4; media 2.28571
    min 1; max 4; media 2.5
    min 1; max 4; media 2.28571
    min 1; max 4; media 2.5
    
  • Information
    Author
    pro2
    Language
    Catalan
    Official solutions
    C++
    User solutions
    C++